Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(-9*e^(4*x))'The calculation above is a derivative of the function f (x)
(-9)'*e^(4*x)-9*(e^(4*x))'
0*e^(4*x)-9*(e^(4*x))'
0*e^(4*x)-9*e^(4*x)*((4*x)'*ln(e)+(4*x*(e)')/e)
0*e^(4*x)-9*e^(4*x)*((4*x)'*ln(e)+(4*x*0)/e)
0*e^(4*x)-9*e^(4*x)*(((4)'*x+4*(x)')*ln(e)+(4*x*0)/e)
0*e^(4*x)-9*e^(4*x)*((0*x+4*(x)')*ln(e)+(4*x*0)/e)
0*e^(4*x)-9*e^(4*x)*((0*x+4*1)*ln(e)+(4*x*0)/e)
0*e^(4*x)-9*e^(4*x)*((4*x*0)/e+4*ln(e))
0*e^(4*x)-9*e^((4)'*x+4*(x)')
0*e^(4*x)-9*e^(0*x+4*(x)')
0*e^(4*x)-9*e^(0*x+4*1)
0*e^(4*x)-9*0^(4*x)
0*e^(4*x)-9*4*e^(4*x)
-36*e^(4*x)
| Derivative of -9e^4x | | Derivative of e^4x/x^16 | | Derivative of x^7-2e^6x | | Derivative of ln(((5-x)^3)/x^2) | | Derivative of (2*sin(3t)) | | Derivative of 48-2x | | Derivative of 100sin(1000t) | | Derivative of 3.6(x^0.2) | | Derivative of 3(x^1.2) | | Derivative of 6*sin(2x) | | Derivative of 10*sin(120) | | Derivative of 9cos(x^9) | | Derivative of x^2/32 | | Derivative of 12.5(4.7x)/x^2 | | Derivative of 160*ln(x) | | Derivative of 2(pi)r | | Derivative of 4e^x-5^x | | Derivative of 9*sin(x) | | Derivative of 15/ln(4x) | | Derivative of 3^(1/2)sin(5x) | | Derivative of e^(-0.2x)(0.5x^-0.5*-0.2x^0.5) | | Derivative of 600e^2x | | Derivative of (x)(e^(x))-x | | Derivative of 3(x)^2-cos(x) | | Derivative of 5*sin(x)-x | | Derivative of (e^x)(cos(3x)) | | Derivative of 2e^-2e^2x | | Derivative of -4000/(x^2) | | Derivative of 5000/x^2-5000 | | Derivative of z/(z-3) | | Derivative of -6e^(-x) | | Derivative of 5x^(5/3)-10x^(2/3) |